




1 Introduction

It is illegal to use information on age, race, or sex to make employment decisions in the United

States. Though economists are often called upon to evaluate claims of illegal employment discrim-

ination, academic research in labor economics provides surprisingly little methodological guidance

for assessing whether particular employers are discriminating. Rather, the focus of the volumi-

nous empirical literature on labor market discrimination (Altonji and Blank, 1999; Guryan and

Charles, 2013) has centered around methods for establishing whether markets discriminate against

particular groups of workers on average. At least since the work of Becker (1957), however, it has

been recognized that employers may vary substantially in the extent to which they are discrimina-

tory, and that this variation (in particular, the di�erence in prejudice between the marginal and

average �rm) inuences the adverse impact of discrimination on outcomes for minority workers

(Charles and Guryan, 2008). It is therefore essential to understand heterogeneity in discrimination

across employers, both for assessing the economic consequences of discrimination and for enforcing

anti-discrimination law.

This paper develops tools for detecting discrimination by individual employers. The proposed

methods rely on correspondence experiments in which �ctitious applications with randomly assigned

characteristics are submitted to actual job vacancies (Bertrand and Duo, 2017 provide a review).

A key advantage of correspondence studies over traditional in-person audits is that the perceived

traits of an applicant can be independently manipulated, revealing the ceteris paribus inuence of

protected attributes such as race or gender on employer behavior. Starting with the seminal work

of Bertrand and Mullainathan (2004), it has become standard to sample thousands of jobs and send

each of them four applications. Bertrand and Mullainathan found callback rates to distinctively

white names to be roughly 50% higher than those to distinctively black names, leading them to

conclude that discrimination was operative in the markets they studied. Our basic insight is that

such a study is best viewed as an ensemble of many small exchangeable experiments. From this

ensemble, one can infer properties of the distribution of discriminatory behavior which can, in turn,

be used to form posteriors about the probability that any given employer is discriminating. These

posteriors can then aid in making decisions about which employers to investigate.

To ground our analysis, we develop a formal econometric framework for analyzing correspon-

dence studies. The foundation of this framework is the assumption that callback outcomes at a

particular job constitute independent Bernoulli trials governed by job- and race-speci�c callback

probabilities. We show that this assumption is testable and document empirical support for it in

correspondence study data. Treating the pair of callback rates at each job as a random draw from

a stable super-population, we denote the joint cumulative distribution function of white and black

callback probabilities by G (pw; pb) : [0; 1]2 ! [0; 1]. We then establish which moments of G (�; �)
are identi�ed as a function of the number of applications of each race sent to each job. Though

our focus is on correspondence studies, these results are more broadly applicable to ensembles of

randomized experiments implemented across many sites.
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Building on our identi�cation results, we propose shape-constrained Generalized Method of

Moment (GMM) estimators of the identi�ed moments of the callback distribution that require the

moment estimates be rationalizable by a coherent bivariate probability distribution. We apply

these estimation methods to three experimental datasets: the original Bertrand and Mullainathan

(2004) study of racial discrimination, a larger, more recent study by Nunley et al. (2015) of racial

discrimination in the market for recent college graduates, and a study by Arceo-Gomez and Campos-

Vasquez (2014) that used eight applications per job. In each study, we �nd overwhelming evidence

of heterogeneity across jobs in the extent of discrimination. In the more recent studies, where third

and higher moments are identi�ed, we �nd evidence of skew and thick tails in the distribution of

discriminatory behavior: while most �rms barely discriminate, a few discriminate very heavily.

Next we consider what race-speci�c callback distributions G (�; �) are consistent with the iden-

ti�ed moments of the callback distribution. Of particular interest is the fraction of jobs exhibiting

any discrimination. We derive an analytic lower bound on the fraction of jobs that engage in dis-

crimination conditional on the total number of callbacks. We then show how sharp bounds can be

computed via a linear programming routine that works with a discrete approximation to G (�; �) to

characterize the relevant moment constraints. These bounds extend some results in the literature

on large scale inference concerned with identi�cation of the fraction of null hypotheses that are

true (Benjamini and Hochberg, 1995; Efron et al., 2001; Storey, 2002; Efron, 2004, 2012). We

�nd that the linear programming bounds are signi�cantly tighter than our analytic bound and are

informative even among the sub-population of jobs calling back no applications. In the Bertrand

and Mullanaithan experiment, we estimate that at least half of the jobs calling back one, two, or

three of the four applications sent to each job are discriminating based upon race. By contrast, as

few as 20% of the jobs that call back all four applications are discriminating and as few as 5% of

the jobs that call back no applications are discriminating.

These bounds on the fraction of jobs that discriminate constitute a form of \indirect evidence"

(Efron, 2010) that can be used to re�ne an assessment of whether any individual employer is

discriminating. Consider, for example, the case of a job sent four applications that calls back only

the two white applications. Under the null hypothesis that callbacks do not depend on race at this

job, the probability of only the two white applications being contacted given that two applications

have been called back in total is 1=6. But in the Bertrand and Mullainathan data, we estimate that

at most 56% of the jobs that call back two applications in total are not discriminating, so only a

very weak presumption of innocence is justi�ed. Moreover, calling back only the white applications

is relatively common, occuring in 34% of the cases where two total applications are called back.

Bayes’ rule then implies the probability that such a job is not discriminating is at most 1
6�

:56
:34 � :27.

Here, the indirect evidence tips the scale slightly in the employer’s favor but allows us to conclude

that, at most, 27% of such jobs are not discriminating on the basis of race. This need not be the

case in general; in the Nunley et al. (2015) experiment, for example, we estimate that at most 15%

of jobs that contact two white and zero black applicants are not discriminating.

Making decisions based upon lower-bound posterior probabilities of discrimination may yield
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probabilities, de�ned as follows:

pjr �
Z 1

0
Yj (r; u) du; r 2 fb; wg:

The probability pjr may be interpreted as the callback rate that would emerge in a hypothetical

experiment in which a large number of applications of race r are sent to job j. Assumption 1

implies that callbacks take the form of (race-speci�c) binomial trials governed by these probabilities.

Letting Cjr =
PL

‘=1 1 fRj‘ = rgYj‘ denote the number of applications of race r to job j that were

called back, we can write the probability Pr (Cjw = cw; Cjb = cbjpjw; pjb) that employer j calls back

cw out of Lw white applications and cb out of Lb black applications as:

f (cw; cbjpjw; pjb) =

 
Lw

cw

! 
Lb

cb

!
pcwjw (1� pjw)Lw−cw pcbjb (1� pjb)Lb−cb : (1)

We are now ready to o�er a de�nition of systematic discrimination, which we will henceforth

refer to simply as discrimination.

De�nition. Job j engages in discrimination when pjb 6= pjw.

We can now label discriminatory jobs with the indicator function Dj = 1fpjb 6= pjwg. Note that

this de�nition is prospective in that an employer with Dj = 1 will eventually discriminate against

an applicant, though it may not do so in any particular �nite sample. Indeed, it is likely that

many of the jobs sampled in audit experiments are engaging in illegal discrimination but have not

discriminated against any of the �ctitious applicants in the study because none of the �ctitious

applicants would have been called back regardless of their race.

3 Ensembles and Decision Rules

The above framework treats each job’s callback decisions as a set of race-speci�c Bernoulli trials.

We next consider what can be learned from a collection of experiments conducted at many jobs.

This idea is formalized in the following exchangeability assumption on the jobs.

Assumption 2. Race-speci�c callback probabilities are independent and identically distributed:

pjw; pjb
iid� G (�; �) :

The distribution function G (pw; pb) : [0; 1]2 ! [0; 1] describes the population of jobs from

which a study samples. In practice, audit studies usually draw small random samples of jobs from

online job boards. The iid assumption abstracts from the fact that there are a �nite number of

jobs on these boards. Note that by virtue of random assignment (Assumption 1) pjw and pjb are

independent of the racial mix of applications to job j as well as any other resume characteristics

that are randomized.
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Assumption 2 implies that the unconditional distribution of callbacks can be expressed as a

mixture of binomial trials. Let Cj � (Cjw; Cjb) denote the callback counts for job j. We denote

the unconditional probability of observing the callback vector c = (cw; cb) by

�f (c) � Pr (Cj = c)

=

Z
f (cw; cbjpw; pb) dG (pw; pb) : (2)

The distribution G (�; �) will serve as a key object of interest in our analysis. One reason for

interest in G (�; �) is that it characterizes both the prevalence and extent of discrimination in a

population. For instance, the proportion of jobs that are not engaged in discrimination can be

written:

�0 � Pr (Dj = 0) =

Z
dG (p; p) :

A second reason for interest in G (�; �) lies in its potential forensic value as a tool for identifying

which jobs are discriminating. The quantity

� (c) � Pr (Dj = 1jCj = c)

gives the proportion of jobs with callback vector c that are discriminating. Though this quantity

has a clear frequentist interpretation as the fraction of discriminators that would be found under

repeated sampling, we can also think of it as giving a posterior probability of discrimination given

the \evidence" Cj . Speci�cally, invoking Bayes’ rule, we can write this posterior as a functional of

the \prior" G (�; �):

� (c) =
Pr (Cj = cjDj = 1)

�
1� �0

�
�f (c)

=
1� �0

�f (c)

Z
pw 6=pb

f (cw; cbjpw; pb) dG (pw; pb)

� P

0@ c|{z}
direct

; G (�; �)| {z }
indirect

1A :

The dependence of � (c) on G (�; �) is an example of what Efron (2010) refers to as \indirect evi-

dence." To understand the logic of incorporating indirect evidence, suppose �0 = 1 so that no jobs

discriminate. Then � (c) = 0 regardless of job j’s callback outcomes { any seemingly suspicious

callback decisions are due to chance. Likewise, if �0 = 0, all jobs are discriminators and there is no

need for direct evidence on the behavior of particular jobs. But in intermediate cases, where some

fraction of jobs are discriminators, and some are not, it is optimal to blend the direct evidence Cj

from a particular job with contextual information on the population G (�; �) from which that job

was drawn to make decisions. We next analyze how exactly such indirect evidence should feature

in decision-making under uncertainty.
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The Auditor’s Problem

Consider the problem of an auditor who knows the distribution G (�; �) and aims to decide which

jobs to investigate for the presence of illegal discrimination using a dataset of callbacks fCjgJj=1

as evidence. The auditor uses a deterministic decision rule � (c) : f0; :::; Lwg � f0; :::; Lbg ! f0; 1g
that maps the callback vector c = (cw; cb) to a binary inquiry decision.1

The auditor’s loss function from applying a decision rule � (�) to a dataset of J jobs is:

LJ (�) =
JX
j=1

8><>:� (Cj) (1�Dj)| {z }
Type I

�+ [1� � (Cj)]Dj| {z }
Type II



9>=>; : (3)

This loss function places a cost � on investigating \innocent" jobs with Dj = 0 (type I errors) and

a cost  of not investigating \guilty" jobs with Dj = 1 (type II errors). Because the fDjgJj=1 are

not known, the auditor minimizes expected loss (i.e. risk), which we denote by R:

RJ (G; �) � E [LJ (�)]

=

JX
j=1

E [� (Cj) (1� P (Cj ; G))�+ [1� � (Cj)]P (Cj ; G) ]

= JE [� (Cj) (1� P (Cj ; G))�+ [1� � (Cj)]P (Cj ; G) ] ;

where E [�] denotes the expectation operator, the second line follows from iterated expectations,

and the third uses that the fCj ; DjgJj=1 are iid across jobs. The following Lemma, which mirrors

a standard result in statistical decision theory (e.g., DeGroot, 2004, Theorem 8.11.1), establishes

that the optimal strategy of the auditor is to investigate jobs that exceed a posterior threshold.

Lemma 1 (Posterior Threshold Rule). The decision rule � (Cj) = 1
n
P (Cj ; G) > �

+�

o
minimizes

RJ (G; �).

Proof. Risk can be rewritten:

RJ (G; �) = J

LwX
cw=0

LbX
cb=0

Z
f� (cw; cb) (1� P (cw; cb; G))�+ [1� � (cw; cb)]P (cw; cb; G) g

� f (cw; cbjpw; pb) dG (pw; pb) :

Minimizing this integral pointwise, we see that for any c = (cw; cb) such that P (c;G) < �
+� , the

integrand is minimized by setting � (c) = 0. Otherwise, risk is minimized by setting � (c) = 1.

One can think of the decision rule � (Cj) as o�ering an economically motivated de�nition of \rea-

sonable doubt": when the posterior probability of discriminating crosses the cost-based threshold

�= (�+ ), it is rational to conduct an inquiry.

1We confine ourselves to deterministic rules because randomized decision rules violate commonly held horizontal
equity principles.
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Remark 1. Recent work by economists emphasizes the role of preferences in the optimal design of

experiments (Manski, 2000; Kitagawa and Tetenov, 2018; Narita, 2019). In our setting, an auditor

might bene�t from choosing the application design (Lw;Lb) in addition to the decision rule �(�) to

minimize risk. We consider such an exercise empirically in Section 10.

Connection to Large Scale Testing

An interesting connection exists between the auditor’s problem and the literature on large scale

testing, which is concerned with deciding which hypotheses to reject based upon the results of a

very large number of tests (Efron, 2012 provides a review). A seminal contribution to this literature

comes from Benjamini and Hochberg (1995), who proposed controlling the False Discovery Rate

(FDR): the expected share of rejected null hypotheses that are true. We next show that the

auditor’s optimal decision rule will control an analogue of the FDR.

Letting NJ �
PJ

j=1 �(Cj) denote the total number of investigations resulting from the auditing

rule �(�), we can de�ne the Positive False Discovery Rate (Storey, 2003) as:

pFDRJ = E
h
N−1
J

PJ
j=1 �(Cj)(1�Dj)jNJ � 1

i
.

In words, pFDRJ gives the proportion of investigated jobs that are not discriminating,

conditional on at least one investigation taking place. The following Lemma establishes that the

optimal decision rule controls pFDRJ at a level determined by the ratio �=.

Lemma 2 (pFDRJ Control). If � (Cj) = 1
n
P (Cj ; G) > �

+�

o
then pFDRJ � 

�+ .

Proof. Storey (2003, Theorem 1) showed that pFDRJ = Pr(Dj = 0j�(Cj) = 1) for any determinis-

tic decision rule �(�) obeying Pr (�(Cj) = 1) > 0 (see Appendix A for a self-contained proof of this

result). Therefore the optimal auditing rule � (Cj) = 1
n
P (Cj ; G) > �

+�

o
yields

pFDRJ = Pr

�
Dj = 0jP (Cj ; G) >

�

 + �

�
� Pr

�
Dj = 0jP (Cj ; G) =

�

 + �

�
= 1� �

 + �
:

By contrast, consider an auditor who bases investigations on a classical hypothesis test �† (Cj) that

controls size at a �xed level ~� < 1. To simplify exposition, suppose that the test is pivotal under

the null of non-discrimination so that

Pr
�
�† (Cj) = 1jpjw = p; pjb = p

�
= ~�; 8p 2 [0; 1] :
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We can write the resulting pFDRJ of this rule

Pr
�
Dj = 0j�† (Cj) = 1

�
=

Pr
�
�† (Cj) = 1jDj = 0

�
�0

Pr (�† (Cj) = 1jDj = 0)�0 + Pr (�† (Cj) = 1jDj = 1) (1� �0)

� ~��0

~��0 + 1� �0
:

To see that �† (Cj) fails to control pFDRJ , note that lim�0↑1
�̃�0

�̃�0+1−�0 = 1: when nearly all jobs

are innocent, classical hypothesis testing will result in the vast majority of investigations being false

accusations.

Remark 2. The False Discovery Rate of Benjamini and Hochberg (1995) can be written FDRJ =

pFDRJ � Pr (NJ � 1). Because Pr (NJ � 1) � 1, the optimal auditing rule also controls FDRJ .

Remark 3. The auditor’s risk can be written

RJ (G; �) = J f�� pFDRJ � Pr (� (Cj) = 1) +  � pFNRJ � [1� Pr (� (Cj) = 1)]g ;

where pFNRJ = E[(J �NJ)−1PJ
j=1 (1� �(Cj))Dj jNJ < J ] is the Positive False Nondiscovery

Rate (Storey, 2003, Corollary 4). Hence, the auditor’s marginal rate of substitution between the

Positive False Discovery and Positive False Nondiscovery rates is �


Pr(�(C1)=1)
1−Pr(�(C1)=1) .

Auditing under Ambiguity

The distribution G (�; �) will not, in general, be point identi�ed even by experiments with many

applications per job. When G is only known to lie in some identi�ed set � of distributions,

many possible decision rules are consistent with rationality. Among those rules, an important

benchmark is the minimax decision rule (Wald, 1945; Savage, 1951; Manski, 2000), which minimizes

the maximum risk that may arise from the experiment. We de�ne the maximum risk function and

the associated minimax decision rule respectively as:

RmJ (�; �) � sup
G∈Θ
RJ (G; �) and �mm � arg inf

�∈D
RmJ (�; �); (4)

where D is the set of deterministic decision rules.

Unlike in the case where G (�; �) is known, an auditor that only knows G 2 � cannot consult a

single posterior probability to make the decision of whether to investigate. Rather, the maximum

risk of each decision rule must be computed to obtain the minimax decision rule. The next section

establishes more carefully what features of G (�; �) are identi�ed by a given experimental design and

provides an approach to computing Rm (�; �).

Remark 4. Rules that minimize maximum risk over a restricted set � of distributions were con-

sidered by Hodges et al. (1952) and Robbins (1964) and are sometimes referred to as ��minimax

estimators (see, e.g., Berger, 1979; Noubiap et al., 2001; Lehmann and Casella, 2006; Berger, 2013).

While the statistics literature has typically chosen the set of candidate distributions based upon
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�f0
2 (2; 0) =

 
2

2

! 
2

0

!
=

 
4

2

!
=

1

6
:

Since the function �ft (c) is directly identi�ed by random sampling, the sole under-identi�ed

quantity in equation (7) is �0
t , which serves as the auditor’s prior probability that an employer is

innocent knowing only that it made t callbacks in total. The following Lemma provides a tractable

bound on this quantity.

Lemma 3 (Upper Bound on Stratum Prior). �0
t � minc:cw+cb=t min

n
f̄t(c)

f̄0t (c)
; 1−f̄t(c)

1−f̄0t (c)

o
:

Proof. By the law of total probability:

�ft (c) = �f0
t (c)�0

t + �f1
t (c)

�
1� �0

t

�
;

where �f1
t (c) � Pr (Cj = cjDj = 1; Cjb + Cjw = t). The result follows immediately from observing

that �f1
t (c) 2 [0; 1].

Plugging the upper bound of Lemma 3 into (7) therefore yields a lower bound on the posterior

probability of discrimination:

� (c) � 1�
�f0
t (c)
�ft (c)

min
c′:c′w+c′b=t

min

� �ft (c′)
�f0
t (c′)

;
1� �ft (c′)

1� �f0
t (c′)

�
: (8)

Remark 9. A bound of the sort derived in Lemma 3 was used by Efron et al. (2001, p. 1154) to

control FDRJ in a multiple testing analysis of a microarray experiment. Storey (2002) proposed

a related class of upper bounds that are generally looser, but easier to estimate (see Armstrong,

2015 for an approach to inference on these bounds).

Sharp Bounds

While the bounds in Lemma 3 are easy to compute, they need not be sharp, as restrictions across

strata de�ned by the number of callbacks Cjb + Cjw have been ignored. An upper bound on the

prior �0
t that exploits all of the logical restrictions in our framework can be written as the solution

to the following constrained optimization problem:

max
G(·;·)∈G

 
L

t

!
P

(c′w;c′b):c′w+c′b=t
�f
�
c′w; c

′
b

� Z pt (1� p)L−t dG (p; p) ; (9)

s:t: �f (cw; cb) =

 
Lw

cw

! 
Lb

cb

!Z
pcww (1� pw)Lw−cw pcbb (1� pb)Lb−cb dG (pw; pb) ; (10)

for (cw = 0; ::; Lw; cb = 0; ::; Lb) :
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imposing the shape constraints reduces the estimated standard errors of some of these moments. It

is important to note, however, that the asymptotic distribution of the shape constrained estimator

will tend to be non-normal (Fang and Santos, 2018) and so standard errors provide only a heuristic

guide to the uncertainty associated with each moment estimate.

Columns 7-9 of Table VI report key moment estimates from the AGCV data. The behavior of

the �rst two moments is similar to that reported in the prior two experiments, with gender-speci�c

standard deviations roughly twice their mean callback probabilities. However, the greater number

of applications used in this design helps enormously with the precision of higher moment estimates.4

We �nd strong evidence of left-skew in the distribution of gender gaps in callback probabilities as

well as evidence of excess kurtosis in the distribution of gaps. While many jobs discriminate little,

there is a thick tail of heavy discriminators.

8 Posterior Bounds

Our analysis of moments revealed substantial heterogeneity in callback probabilities and discrimi-

nation across employers. Next, we compute lower bound estimates of the probability that a given

employer is discriminating. In computing both the analytic bounds of Lemma 3 and the sharp

bounds of (9), we replace the unknown callback probabilities �f with estimates �̂f = B�̂, where �̂ is

the relevant vector of shape constrained moment estimates reported in Tables III-V. To ensure our

bounds are not arti�cially tight, our linear programming algorithm employs a grid with 36 times

as many points as the grid used in our earlier GMM step.

Bertrand and Mullainathan (2004)

Table VII reports upper bounds on the fraction of jobs that are not engaged in discrimination by

the number of applications called back in the Bertrand and Mullainathan experiment. Column

1 of Table VII reports estimates of the analytic bounds in Lemma 3: at most 62% of the jobs

that call back 2 applications are innocent of discrimination, while at most 56% of jobs that call

back 3 applications are not discriminating. Column 2 of Table VII reports estimates of the sharp

linear programming bounds. The sharp upper bounds are somewhat lower than their analytical

counterparts, revealing that at most 56% of the jobs calling back two applicants are not discrimi-

nating. Among jobs that call back three applications, at most half are not discriminating on the

basis of race. In this callback stratum, our estimates suggest jobs should not logically be presumed

innocent.

The linear programming approach also generates informative bounds in callback strata for which

analytical bounds are not available. Overall, at most 87% of jobs do not discriminate on the basis of

race. Notably, at most 96% of jobs that call back no applications are not engaged in discrimination,

4Though the standard errors reported in Table VI suggest imprecision in our estimates of the higher moments
of the female callback rate distribution, this appears to be a consequence of the asymptotic non-normality of the
shape-constrained estimator. For example, the numerical bootstrap gives a 90-percent confidence interval of [5.37,
7.49] for the excess kurtosis of pjf while the corresponding standard error equals 8.79.
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while at most 79% of jobs that call back all four applications do not discriminate on the basis of

race. Since neither of these strata exhibit any di�erence in black-white callback rates, all of the

relevant information on discrimination in these strata comes from the total number of callbacks

blended with the indirect evidence from the callback distribution G (�; �).
Column 3 of Table VII reports linear programming-based upper bounds on the proportion of jobs

with white callback probabilities greater than or equal to their black callback probability, Pr(pwj �
pbj). We �nd an upper bound of exactly one in each callback stratum, indicating that the callback

probabilities can be rationalized without any employers engaging in \reverse discrimination" against

whites. Column 4 of Table VII reports upper bounds on the proportion of jobs with white callback

probabilities less than or equal to their black callback probabilities, Pr(pwj � pbj). These upper

bound estimates coincide exactly with those reported in column 2. Accordingly, we easily reject

the null hypothesis of no discrimination against blacks.

Figure I converts the upper bound estimates in column 2 of Table VII to lower bound posterior

probabilities of discrimination. Overall, at least 13% of jobs engage in discrimination. However, at

least 72% of jobs that call back two white and no black applications are discriminating, while a job

that calls back one white and no black applications has at least a 58% chance of discriminating.

Highlighting the role of indirect evidence, we estimate that at least 4% of jobs that call back no

applicants and at least 21% of jobs that call back all applicants discriminate on the basis of race.

Nunley et al. (2015)

Table VIII reports upper bound estimates of the probability of innocence from the Nunley et al.

(2015) study for each application design involving both races. In column 1, our analytic bound

formula suggests at most 72% of the jobs calling back two applicants in a balanced design with

Ljw = Ljb = 2 are not discriminating { slightly higher than the corresponding estimate in Bertrand

and Mullainathan. This upper bound is higher in the two imbalanced designs (Ljw = 3; Ljb = 1)

and (Ljw = 1; Ljb = 3).

Applying the linear programming approach tightens these bounds dramatically and provides

additional bounds on the prevalence of discrimination among jobs that make no callbacks or that

call every application. We estimate that at most 64% of all jobs have equal white and black

callback probabilities, with that share falling to under 31% among employers who call back two

applicants in a balanced (2; 2) design. However, some of this discrimination is estimated to be

against whites. Column 3 shows that our shape constrained callback probabilities �̂f imply that at

most 85% of employers have white callback probabilities greater than or equal to black probabilities.

However, these moments are estimated with error, and a bootstrap test of the null hypothesis that

all employers have white callback probabilities weakly exceeding their black callback probability

yields a p-value of 0.12. If we attribute the evidence of reverse discrimination to sampling error,

we can take the estimates in column 3 as the relevant upper bounds on non-discrimination, which

are closer to the analytical bounds reported in column 1. Column 4 of Table VIII reports that

at most 83% of jobs have white callback probabilities less than or equal to black probabilities.
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Unsurprisingly, we decisively reject the null hypothesis that this upper bound is one, indicating

that discrimination against blacks is substantial.

Figure II converts the upper bound priors reported in column 3 of Table VIII into posterior

estimates of the share of employers with selected callback con�gurations engaged in discrimination

against blacks. Overall, at least 15% of jobs discriminate against blacks (i.e., have pjw > pjb).

However, we estimate that at least 85% of the employers calling back two white and no black

applicants in a balanced (2; 2) design are discriminating against blacks. Interestingly, calling back

three whites and no blacks in a (3; 1) design is estimated to be even more suspicious, with at least

90% of the employers generating this callback evidence engaged in discrimination against blacks.

Arceo-Gomez and Campos-Vasquez (2014)

Table IX reports upper bound estimates of the probability of innocence in the AGCV experiment.

Focusing on the sharp bounds reported in column 2, we �nd that at most 72% of jobs are not

engaged in discrimination against either gender. Remarkably, this share falls to 11% among jobs

calling back a single applicant and rises to only 28% among jobs calling back two applicants. This

bound is much lower than the analytic bound in column 1, showing that cross-stratum restrictions

in a design with eight applications are very useful for tightening bounds in strata with few callbacks.

Evidently, jobs that call back few applicants in the AGCV experiment are very likely to engage in

discrimination.

Some of this discrimination appears to be \reverse" discrimination against women. Column 3

shows that at most 91% of jobs do not discriminate against women and a bootstrap test of the null

hypothesis that this bound equals one is decisively rejected. An employer that calls back a single

application has at most a 59% chance of not discriminating against women. Column 4 shows that at

most 81% of jobs do not discriminate against men, and our bootstrap p-value indicates this bound

is also statistically distinguishable from one. The mean di�erence in callback rates in the ACGV

experiment therefore masks gender discrimination operating in both directions. An employer that

calls back a single application has at most a 52% chance of not discriminating against men.

Figure III plots lower bound posterior probabilities of discrimination against men and women,

respectively, for selected callback con�gurations. Unconditionally, at least 20% of jobs discriminate

against men (i.e., have pjm < pjf ), while at least 10% of jobs discriminate against women (i.e.,

have pjf < pjm). At least 97% of the jobs that call back four women and no men are estimated

to discriminate against men. But even an employer that calls back a single woman and no men

has at least a 90% chance of discriminating against men. Likewise, at least 85% of jobs that call

back a single man and no women are estimated to be discriminating against women. Note that

the under null of non-discrimination, the probability of a particular gender being contacted given

a single callback in total is �f0
1 (1; 0) = �f0

1 (0; 1) = 1=2. That we obtain such strikingly informative

posteriors in settings with a single callback demonstrates the tremendous value of indirect evidence

in this setting.

22



9 Parametric Models

The previous section demonstrated that standard audit experiments allow robust non-parametric

inferences to be drawn about the discriminatory status of particular jobs. In this section, we

contrast the non-parametric bounding methods developed above with the results of considering a

simple parametric family G� of distributions for G (�; �). We estimate the parameter vector � by

maximum likelihood. If the true G (�; �) lies in G� then this approach will yield consistent and

e�cient estimates of �, while if the model is misspeci�ed, maximum likelihood will still provide an

approximation to whatever features of G (�; �) are identi�ed. Parametric modeling also facilitates

incorporating other application characteristics into the callback probabilities. This can serve to

generate more nuanced posteriors; for example, an employer that calls back both of two low quality

white applications but neither of two high quality black applications is particularly suspicious.

We work with a mixed logit model of the form

Pr (Yj‘ = 1jRj‘; Xj‘; �j ; �j) = �
�
�j � �j1 fRj‘ = bg+X ′j‘ 

�
;

where � (�) = exp(·)
1+exp(·) is the standard logistic CDF, Xj‘ is a vector of de-meaned application covari-

ates, and (�j ; �j) are random coe�cients governing the odds of a white callback and discrimination

against blacks respectively. To allow for heterogeneity in white callback rates we assume that

�j
iid� N

�
�0; �

2
�

�
. Discrimination is modeled as a two-type (conditional) mixture:

�j j�j =

8<:�0 w/ prob. � (�0 + ���j);

0 w/ prob. 1� � (�0 + ���j):

The above speci�cation allows for some fraction of jobs to not discriminate at all, while the

remaining jobs depress the odds of calling back blacks relative to whites by roughly �0%. When

�� 6= 0, the probability of a job discriminating depends on �j , which governs the white callback

rate. Note that random assignment of the covariates Xj‘ implies they can safely be excluded from

the type probability equation.

Model Estimates

Table X shows the results of �tting the above model to the Nunley et al. (2015) experiment. Column

1 provides a standard \random e�ects" logit model with heterogeneity con�ned to the intercept as

in Farber et al. (2016). We �nd substantial variability across jobs in the overall odds of a callback:

a 0.1 standard deviation increase in the intercept �j is estimated to raise the odds of a callback by

47%. We also �nd clear evidence of market-wide discrimination: black applications have roughly

46% lower odds of being called back than their white counterparts.

Column 2 allows the race e�ect �j to vary across employers, which yields a signi�cant improve-

ment in model �t. The types speci�cation �nds that only about 17% of jobs discriminate against

blacks { very near the lower bound estimate of 15% produced by our linear programming routine
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because the least favorable G (�; �) is one where nearly all jobs are innocent. Recall however from

Table VIII that not all jobs can be innocent in the Nunley et al. (2015) experiment, which is why

sup�∈D† RmJ (�) =J is a value less than four.

While the logit risk function RJ (Glogit; �) is minimized by the decision rule with a threshold

nearest 80%, RmJ (�) is minimized by a rule with an implicit (logit-based) threshold of only 18%.

This lower threshold implies a minimax auditor would investigate many more jobs than an auditor

with the same preferences who knows G (�; �) to be logit. Evidently, the minimax auditor is more

concerned with the possibility that she is passing over a vast number of jobs engaged in modest

amounts of discrimination than that a few non-discriminators are improperly investigated. To gain

some intuition for this result, note that the minimax decision rule occurs at a threshold where the

fraction of jobs that are engaged in discrimination more than triples. If the worst case DGP is one

where most jobs are guilty, it makes sense to accuse more jobs. The lesson here is that although

mispeci�cation can lead to substantially higher risk, ambiguity regarding G (�; �) will tend to lead

to more rather than fewer audits.

12 Conclusion

Correspondence studies are powerful tools that have been extensively used to detect market level

averages of discriminatory behavior. Revisiting three such studies, we �nd tremendous hetero-

geneity across employers in their degree of discriminatory behavior. This heterogeneity presents

authorities charged with enforcing anti-discrimination laws with a di�cult inferential task. Our

analysis suggests that when ensemble evidence is used, 10 applications per employer is enough to

accurately detect a non-trivial share of discriminatory employers. This �nding opens the possibility

that discrimination can be monitored { perhaps in real time { at the employer level.

Our results also provide a number of methodological lessons regarding the design and analysis of

correspondence studies, and of experimental ensembles more generally. First, we demonstrate that

indirect evidence can serve as a valuable supplement to direct evidence when making inferences

regarding the behavioral responses of particular experimental units. Our logit results, in partic-

ular, suggest that accurately monitoring illegal discrimination in online labor markets is feasible

with relatively small modi�cations to conventional audit designs once knowledge of the callback

distribution G (�; �) has been obtained. Whether such knowledge is better obtained through se-

quential experimentation (e.g., Chakraborty and Murphy, 2014; Dimakopoulou et al., 2017; Narita

et al., 2018) or static empirical Bayes methods of the sort considered in this paper is an interesting

question for future work.

Second, our analysis demonstrates that partial identi�cation of the population distribution of

response heterogeneity does not preclude \borrowing strength" from experimental ensembles. Using

only a few moments of the callback distribution, we are able to derive informative lower bounds

on the fraction of jobs engaging in illegal discrimination. These bounds are shown to allow precise

inferences to be drawn about some jobs even in standard designs with only four applications per
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in order to accomodate jobs with very low levels of discrimination while economizing on the number

of grid points. Note that lim
K→∞

% (K; y) = 1 ensuring the grid asymptotically spans the unit square.

With this notation, the constraints in (10) can be written:

�f (cw; cb) =

 
Lw

cw

! 
Lb

cb

!
KX
k=1

KX
l=1

�kl% (k; l)cw (1� % (k; l))Lw−cw % (l; k)cb (1� % (l; k))Lb−cb ;

(12)

for cw = (1; :::; Lw) and cb = (1; :::; Lb). Hence, our composite discretized optimization problem is

to

max
{�kl}

 
L

t

!
P

(c′w;c′b):c′w+c′b=t
�f
�
c′w; c

′
b

� KX
l=0

KX
k=0

�kl% (k; l)t (1� % (k; l))L−t ;

subject to (12) and
KX
k=1

KX
l=1

�kl = 1; �kl � 0;

for k = 1; :::;K and l = 1; :::;K. We solve this problem numerically using the Gurobi software

package. Because setting K too low will tend to yield arti�cially tight bounds, we set K = 900 in

all bound computation steps, which yields (900)2 = 810; 000 distinct mass points.

Appendix C: Shape Constrained GMM

To accomodate the Nunley et al. (2015) study which employs multiple application designs, we in-

troduce the variable Aj = (Ajw; Ajb) which gives the number of white and black applications sent

to job j. Collecting the design-speci�c callback probabilities fPr (Cjw = cw; Cjb = cbjAj = a)gcw;cb
into the vector fa, our model relates these probabilities to moments of the callback distribution

via the linear system fa = Ba�, for Ba a �xed matrix of binomial coe�cients. Letting f denote

the vector formed by \stacking" the ffag across designs in an experiment, we write f = B�:

Let � be a K2 � 1 vector comprised of the probability masses f�klgK;Kk=1;l=1 (see Appendix B).

For GMM estimation we set K = 150 (larger values yield very similar results). From (12), we

can write � = M� where M is a dim (�) � K2 matrix comprised of entries with typical element

% (k; l)m (1� % (k; l))s−m % (l; k)n (1� % (l; k))t−n. De�ning R = BM , we have the moment restric-

tion f = R�.

Let ~f denote the vector of empirical call back probabilities with typical element:

J−1
∑J
j=1 1fCjw=cw;Cjb=cb;Aj=ag
J−1

∑J
j=1 1{Aj=a}

.

Our shape constrained GMM estimator of � can be written as the solution to the following

quadratic programming problem:

�̂ = arg inf
�

( ~f �R�)′W ( ~f �R�) (13)
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s.t. � � 0; 1′� = 1;

where W is a �xed weighting matrix. Note that because G (�; �) is not identi�ed, there are many

possible solutions �̂ to this problem, but these solutions will all yield the same values of R�̂. Our

shape constrained estimate of the moments is �̂ = M�̂ while our estimator of the callback

probabilities is f̂ = R�̂. We follow a two-step procedure, solving (13) with diagonal weights

proportional to the number of jobs used in the application design and then choosing W = �̂−1

where �̂ = diag
�
f̂ (1)

�
� f̂ (1)f̂ (1)′ is an estimate of the variance-covariance matrix of the callback

frequencies implied by the �rst step shape-constrained callback probability estimates f̂ (1).

Hong and Li (2017) standard errors

Standard errors on the moment estimates �̂ are computed via the numerical bootstrap procedure

of Hong and Li (2017) using a step size of J−1=4 (we found qualitatively similar results with a step

size of J−1=3). Our implementation of the numerical bootstrap proceeds as follows: the bootstrap

analogue �∗ of �̂ solves the quadratic programming problem in (13) where ~f has been replaced by�
~f + J−1=4f∗

�
. The bootstrap probabilities f∗ have typical element:

J−1
∑J
j=1 !

∗
j 1fCjw=cw;Cjb=cb;Aj=ag

J−1
∑J
j=1 !

∗
j 1{Aj=a}

;

where
n
!∗j

oJ
j=1

are a set of iid draws from an exponential distribution with mean and variance one.

For any function � (�̂) of the moment estimates �̂ reported, we use as our standard error estimate

the standard deviation across bootstrap replications of J−1=4 [� (�∗)� � (�̂)].

Chernozhukov et al. (2015) goodness of �t test

To formally test whether there exists a � in the K2 dimensional probability simplex such that

f = R� holds, we rely on the procedure of Chernozhukov et al. (2015). Our test statistic (the

\J -test") can be written:

Tn = inf
�

( ~f �R�)′�̂−1( ~f �R�)

s.t. � � 0; 1′� = 1:

Letting F∗ = f∗� ~f denote the (centered) bootstrap analogue of the callback frequencies ~f and

W ∗ a corresponding bootstrap weighting matrix, our bootstrap test statistic takes the form:

T ∗n = inf
�;h

(F∗ �Rh)′W ∗(F∗ �Rh) (14)

s.t. ( ~f �R�)′W ( ~f �R�) = Tn; � � 0; 1′� = 1; h � ��; 1′h = 0

As in the full sample problem, we conduct a two-step GMM procedure in each bootstrap replication,
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setting W ∗ =
�
diag(R�(1)∗)� (R�(1)∗)(R�(1)∗)′

�−1
where �(1)∗ is a �rst-step diagonally weighted

estimate of the probabilities in the bootstrap sample. The goodness of �t p-value reported is the

fraction of bootstrap samples for which T ∗n > Tn.

To simplify computation of (14), we re-formulate the problem in two ways. First, we de�ne

primary and auxilliary vectors of errors for each moment condition. Letting �h = F∗ � Rh and

�� = ~f �R�, the problem can be re-posed as:

T ∗n = inf
�h;��

�′hW
∗�h;

s.t. �′�W�� = Tn; Rh+ �h = F∗; R� + �� = ~f; 1′h = 0; 1′� = 1; h � ��; � � 0:

Now letting h+ = h+ �, we can further rewrite the problem as:

T ∗n = inf
�h;��

�′hW
∗�h;

s.t. �′�W�� = Tn; Rh+ + �h + �� = F∗; R� + �� = ~f; 1′h+ = 1; 1′� = 1; h+ � 0; � � 0:

Note that this �nal representation replaces a K2 �K2 + 1 (inequality) constraint matrix encoding

�h � ��� and �� � 0 with a 2K2� 1 vector encoding h+ � 0 and � � 0. Because this problem still

involves a quadratic constraint in ��, we make use of Gurobi’s Second Order Cone Programming

(SOCP) solver to obtain a solution.

Appendix D: Computing Maximum Risk

We approximate G
�
pHw ; p

L
w; p

H
b ; p

L
b

�
with the discretized distribution

GK
�
pHw ; p

L
w; p

H
b ; p

L
b

�
=

KX
k=1

KX
l=1

KX
k′=1

KX
l′=1

�klk′l′1
�
pHw � % (k; l) ; pLw � %

�
k′; l′

�
; pHb � % (l; k) ; pLb � %

�
l′; k′

�	
;

which has K4 mass points. In practice, we choose K = 30, which yields the same number of points

as the approximation described in Appendix B.

Generalizing the notation of Appendix C, let the vector Aj =
�
AHjw; A

L
jw; A

H
jb; A

L
jb

�
record

the number of high quality and low quality applications of each race sent to job j and let Cj =�
CHjw; C

L
jw; C

H
jb ; C

L
jb

�
record the corresponding numbers of callbacks. The posterior probability of

discrimination is Pr (Dj = 1jAj ; Cj) = P (Cj ; Aj ; G). The space of auditing rules we consider is of

the form � (Cj ; Aj ; q) = 1 fP (Cj ; Aj ; Glogit) > qg.With this notation, we can write the risk function

RJ(q) =

JX
j=1

Pr (� (Cj ; Aj ; q) = 1; Dj = 0)�+ Pr (� (Cj ; Aj ; q) = 0; Dj = 1) 

= J �
X
a∈A1

wa fPr (� (Cj ; a; q) = 1; Dj = 0)�+ Pr (� (Cj ; a; q) = 0; Dj = 1) g :
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A2 = f(2; 0; 2; 0) ; (2; 0; 0; 2) ; (0; 2; 2; 0) ; (0; 2; 0; 2)g :

To operationalize these constraints, we replace the unknown cell probabilities Pr (Cj = cjAj = a)

for all c and a in A2 with their predictions under the logit model reported in column 2 of Table

X. Using the logit predictions serves as a form of smoothing that allows us to avoid problems that

arise with small cells when considering quality variation due to covariates.
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No Shape 
constraints constraints

Moment (1) (2)
0.094 0.094

(0.006) (0.007)

0.063 0.063
(0.006) (0.006)

0.040 0.040
(0.005) (0.004)

0.023 0.023
(0.004) (0.003)

0.028 0.028
(0.004) (0.003)

0.015 0.014
(0.003) (0.002)
0.012 0.012

(0.003) (0.002)

0.010 0.010
(0.003) (0.002)
! -statistic: 0.00

" -value: 1.000

Sample size

Table III: Moments of callback rate distribution, BM data

1,112
Notes: This table reports generalized method of moments (GMM) 
estimates of moments of the joint distribution of job-specific white 
and black callback rates in the Bertrand and Mullainathan (2004) 
data. Estimates in column (2) come from a shape-constrained GMM 
procedure imposing that the moments are consistent with a well-
defined probability distribution. The ! -statistic is the minimized 
shape-constrained GMM criterion function. The # -value come from 
a bootstrap test of the hypothesis that the model restrictions are 
satisfied. 
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